
MELLOTRON: MULTISPEAKER EXPRESSIVE VOICE SYNTHESIS BY CONDITIONING
ON RHYTHM, PITCH AND GLOBAL STYLE TOKENS

Rafael Valle*, Jason Li*, Ryan Prenger, Bryan Catanzaro

NVIDIA Corporation

ABSTRACT

Mellotron is a multispeaker voice synthesis model based on
Tacotron 2 GST that can make a voice emote and sing with-
out emotive or singing training data. By explicitly condition-
ing on rhythm and continuous pitch contours from an audio
signal or music score, Mellotron is able to generate speech
in a variety of styles ranging from read speech to expressive
speech, from slow drawls to rap and from monotonous voice
to singing voice. Unlike other methods, we train Mellotron
using only read speech data without alignments between text
and audio. We evaluate our models using the LJSpeech and
LibriTTS datasets. We provide F0 Frame Errors and synthe-
sized samples that include style transfer from other speakers,
singers and styles not seen during training, procedural manip-
ulation of rhythm and pitch and choir synthesis.

Index Terms— Text-to-Speech Synthesis, Singing Voice
Synthesis, Style Transfer, Deep learning

1. INTRODUCTION

Speech synthesis is typically formulated as the conversion of
text to speech (TTS). This formulation, however, leaves out
control for all the aspects of speech not contained in the text.
Here we approach the problem of expressive speech synthe-
sis which includes not just text, but other characteristics such
as pitch, rhythm and emphasis. There are formulations to ex-
pressive speech synthesis that require animated and emotive
voice data. This is an inconvenient drawback given the lim-
ited access to such data. In our approach, we can make a voice
emote and sing without any such data.

Recent approaches that utilize deep learning for expres-
sive speech synthesis combine text and a learned latent em-
bedding for prosody or global style [1, 2]. While these ap-
proaches have shown promise, manipulating such latent vari-
ables only offers a coarse control over expressive character-
istics of speech. Mellotron was motivated by the desire for
fine grained control over these expressive characteristics. No-
tably, we show that it is easy to condition Mellotron on pitch
and rhythm information automatically extracted from an au-
dio signal or music score.

By accounting for melodic information such as pitch and
rhythm, expressive speech synthesis with Mellotron can be

easily extended to singing voice synthesis (SVS) [3, 4]. Un-
fortunately, recent attempts [4] require a singing voice dataset
and heavily quantized pitch and rhythm data obtained from a
digital representation of a music score, for example MIDI [5]
or musicXML [6]. Mellotron does not require any singing
voice in the dataset nor manually aligned pitch and text in
order to synthesize singing voice.

Mellotron can make a voice emote and sing without emo-
tion or singing data. Training Mellotron is very simple and
only requires read speech and transcriptions. During infer-
ence, we can change the generated voice’s speaking style,
make it emote or sing by extracting pitch and rhythm char-
acteristics from an audio file or a music score. As a bonus,
with Mellotron we can explore latent characteristics from an
audio corpus by sampling a dictionary of learned latent char-
acteristics. In summary, Mellotron is a versatile voice syn-
thesis1 model that enables the combination of characteristics
from different sources and generalizes to characteristics not
seen in training data.

2. METHOD

Mellotron is a voice synthesis model that uses a combination
of explicit and latent variables. Whereas well-established sig-
nal processing algorithms provide explicit variables that are
valuable to expressive speech such as fundamental frequency
contours and voicing decisions, deep learning strategies can
be used to learn latent variables that express characteristics
of an audio corpus that are unknown to the user and hard to
formalize.

We factorize a single speaker mel-spectrogramM into ex-
plicit variables such as text, speaker identity, a fundamental
frequency contour augmented with voiced/unvoiced decisions
and two latent variables learned by the model during train-
ing. The first latent variable refers to a dictionary of vectors
that can be queried with an audio input or sampled directly
as described in [2]. The second latent variable is the learned
attention map between the text and the mel-spectrogram as
described in [7].

From now on we will refer to the augmented fundamen-
tal frequency contour as pitch contour and refer to the first

1Includes speech synthesis, singing voice synthesis, etc.

ar
X

iv
:1

91
0.

11
99

7v
1

 [
cs

.S
D

]
 2

6
O

ct
 2

01
9

and second latent variables as global style tokens (GST) and
rhythm respectively.

We are interested in factorizing M = [T, S, P,R,Z],
where T represents the text, S represents the speaker identity,
P represents the pitch contour, R represents the rhythm and
Z represents the global style tokens. Given this formulation,
during training we maximize the following:

P (mel(i)|T (i), S(i), P (i), R(i), Zmel(i) ; θ), (1)

where the superscript i represents the i-th mel, T (i), S(i)

and P (i) represent the text, speaker, and pitch contour asso-
ciated with the i-th mel, Ri represents the learned alignments
between the text and mel-spectrogram frames, Zmel(i) rep-
resents the global style token conditioned on mel(i) as pre-
sented in [2], and θ represents the model parameters.

The explicit factors offers two advantages. First, by pro-
viding the model with text and speaker information, we pre-
vent the problem of entanglement between text and speaker
information. Second by providing the model with pitch con-
tour and voicing information, we are able to directly control
pitch and voicing decisions during inference.

Similarly the latent factors offers two advantages. First,
by learning the alignment map between the text and mel-
spectrogram during training, we do not need to extract
phoneme alignments for training and can control the rhythm
during inference by providing the model with an alignment
map. Second, by providing the model with a dictionary of
latent variables, we are able to learn latent factors that are
harder to express or extract explicitly, thus leveraging the full
power of latent variables.

Using this formulation we are able to transfer the text,
rhythm and pitch contour from a source, e. g. audio signal or
musical score, to a target speaker by replacing the variables
in Equation 1 accordingly. For example, we first collect the
text, pitch and rhythm (Ts, Ps, Rs), from the source, sample
a GST Zquery from the GST dictionary learned by Mellotron,
and chose a target speaker St.

P (melout|Ts, Ps, St, Rs, Zquery; θ) (2)

melout should now have the same text, pitch and rhythm
as the source, latent characteristics obtained from the global
style token and the voice of the target speaker. In our current
formulation, the target speaker, St, would always be found
in the training set, while the source text, pitch and rhythm
(Ts, Ps, Rs) could be from outside the training set. This al-
lows us to train a model that makes a voice emote and sing
without using any singing voice in the training dataset, with-
out any manual labelling of emotions nor pitch, and without
any manual alignments between words and audio, nor be-
tween pitch and audio.

3. IMPLEMENTATION

In this section we are going to describe our model architecture
and our training and inference setups. We plan to release our
implementation and pre-trained models on github.

3.1. Architecture

Mellotron extends Tacotron 2 GST [2] with speaker embed-
dings and pitch countours. Unlike [8, 9], where site specific
speaker embeddings are used, we use a single speaker em-
bedding that is channel-wise concatenated with the encoder
outputs over every token. The pitch contour goes through a
single convolution layer followed by a ReLU non-linearity.
We experiment with kernel sizes 1 and 3 and convolution di-
mensions 1 and 8. The pitch contour is channel-wise concate-
nated with the decoder inputs. We use phoneme representa-
tions whenever possible.

3.2. Training

Our implementation only requires text and audio pairs with
a speaker id. Our pitch contours are automatically extracted
using the Yin algorithm [10] with harmonicity thresholds
between 0.1 and 0.25. Unlike [4], during training our
model does not require manually aligned text, pitch and mel-
spectrogram. We use the L2 loss between ground truth and
predicted mels described in [2] without any modifications.

3.3. Inference

Following the description in Section 2, during inference we
provide Melloron with text, rhythm and pitch information that
is obtained either from an audio signal or from a musical
score, a global style token and a speaker id.

3.3.1. Audio Signal

Obtaining text, rhythm and pitch information consists of three
steps. First, we extract text information from an audio file by
either using an automatic speech recognition model [11, 12]
or by manually transcribing the text. The text information is
pre-processed with our text cleaners and then converted from
graphemes to phonemes.

Second, we extract rhythm information by using a forced-
alignment tool [13, 14] or by using Mellotron as a forced-
aligner. Alignment maps can be obtained with Mellotron by
performing a teacher-forced forward pass using the data from
the source signal. Whenever necessary, we fine tune the align-
ment maps by hand or by training Mellotron on the source
signal for a few iterations with small learning rate.

The pitch data is obtained by using Yin [10] or Melodia
[15]. In our quantitative experiments we use Yin to replicate
the setup described in [1]. In our qualitative experiments we

use Melodia instead as we find it to be more precise than Yin,
specially with regards to false voiced decisions.

3.3.2. Music Score

We operate on music scores in XML format containing event
tuples with pitch, note duration and syllables for each part
in the score. We directly convert pitch to frequency and use
the FFT hop size to convert event durations from seconds to
frames. We remind the reader that although we refer to pitch,
our model’s representation of pitch is continuous.

We concatenate the syllables into words and convert
graphemes to phonemes. For single phone events, the dura-
tion of each phone is equal to the duration of the event. For
multi-phone events, the duration of each phone is dependent
on its type: we use heuristics to assign durations between
20 and 100ms to consonants and assign the remainder of the
event’s duration to vowels. For example, consider a one sec-
ond long single note event on the word Bass with phoneme
representation [B, AE, S]. We set B to 20 ms, S to 100 ms
and the remaining duration to AE, and hence have full control
over the duration of each phone.

4. EXPERIMENTS

We train our models using the LJSpeech (LJS) dataset [16],
the Sally dataset, a proprietary single speaker dataset with 20
hours, and a subset of LibriTTS [17]. All datasets used in our
experiments are from read speech.

We provide results that include style transfer2 from source
speakers seen and unseen in the dataset, from singers, proce-
dural manipulation of rhythm and choir synthesis from music
scores. Visit our website3 to listen to Mellotron samples.

4.1. Training Setup

For all the experiments, we trained on LJS, Sally and the
train-clean-100 subset of LibriTTS with over 100 speakers
and 25 minutes on average per speaker. Speakers with less
than 5 minutes of data and files that are larger than 10 seconds
were filtered out. We do not perform any data augmentation,
hence any extension to a speaker’s characteristics such as vo-
cal range and speech rate is made possible with Mellotron.

We use a sampling rate of 22050 Hz and mel-spectrograms
with 80 bins using librosa mel filter defaults. We apply the
STFT with a FFT size of 1024, hop size of 256, and window
size of 1024 samples.

We use the ADAM [18] optimizer with default parame-
ters, start with a 1e-3 learning rate and anneal the learning
rate as the loss starts to plateau. We decrease training time by
using a single NVIDIA DGX-1 with 8 GPUs.

2Transferring text, rhythm and pitch contour to a target speaker.
3https://nv-adlr.github.io/Mellotron

For decoding the mel-spectrograms produced by Mel-
lotron, we use a single WaveGlow [19] model trained on the
Sally dataset. Our results suggest that Waveglow can be used
as an universal decoder.

In our setup, we find it easier to first learn attention align-
ments on speakers with large amounts of data and then fine
tune to speakers with less data. Thus, we first train Mellotron
on LJS and Sally and finetune it with a new speaker embed-
ding on LibriTTS, starting with a learning rate of 5e-4 and
annealing the learning rate as the loss starts to plateau.

4.2. Quantitative Results

In this section we provide quantitative results that compare
Gross Pitch Error (GPE) [20], Voicing Decision Error (VDE)
[20] and F0 Frame Error (FFE) [21] between Mellotron and
E2E-Prosody [1]. Following [1], all pitch and voicing metrics
are computed using the Yin algorithm [10]. Due to the rhythm
conditioning, our reference and predicted audio have the same
length and does not require padding.

The results in Table 1 below show that by conditioning on
pitch we can drastically reduce the error between the source
and the synthesized voice. For singing voice, low pitch error
is extremely important otherwise the melody might lose its
identity. For prosody transfer, a lower FFE provides evidence
that the style will be more precisely transferred to the target.

Model Voice GPE VDE FFE
E2E-Prosody Single - - 28.1%

E2E-Prosody Multi - - 27.5%

Mellotron LJS-Sally 0.08% 9.19% 9.28%

Mellotron LibriTTS 0.08% 8.69% 8.77%

Table 1: GPE, VDE, FFE for Mellotron and E2E-Prosody.
The reference is always the same speaker.

4.3. Style transfer from Audio Signal

Mellotron is able to emote and match the style of an in-
put audio by replicating its rhythm or both its rhythm and
pitch. Overall, we note that our experiments using audio
data are directly impacted by the quality of the rhythm and
pitch contours provided to the model. Whereas Melodia pro-
vides rather precise pitch contours, we find that the rhythm
data obtained from forced-alignments had to be constantly
fine-tuned. In all audio experiments we obtain the rhythm
by fine-tuning alignment maps obtained by using Mellotron
as a forced-aligner. Occasionally we find that some of the
pitch contours seem to be outside of a speaker’s vocal range.
When this happens, Mellotron defaults to a constant highest
or lowest pitch value. We circumvent this by scaling the pitch
contour by a constant to matches the speaker’s vocal range.

https://nv-adlr.github.io/Mellotron
https://nv-adlr.github.io/Mellotron

4.3.1. Rhythm Transfer

In this experiment we transfer the rhythm and its associated
text from a source audio signal to a target speaker. Our formu-
lation provides procedural control over the duration of every
phoneme, hence allowing for simple manipulations such as
changing the speech rate or complex effects like speeding up
or slowing down. In rhythm transfer, we provide Mellotron
with an array of zeros as the pitch contour.

We show examples where we transfer the rhythm from an
excerpt by Nicki Minaj to Sally. We showcase the procedu-
ral capabilities of Mellotron by processing the source rhythm
with a function that produces an accelerando starting at half
the speed and accelerating to twice the speed. For compari-
son, we also provide samples conditioned on the pitch contour
from Nicki’s track. Figure 1 shows the alignment maps.

Fig. 1: Left: source alignment. Right: processed alignment.

4.3.2. Rhythm and Pitch Transfer

By conditioning on both rhythm and pitch, we can express
characteristics of the source speaker’s style. An interesting
application is the creation of a hybrid with the style from a
source speaker but the voice from another speaker. We show
an example where we transfer the characteristics of a solemn
speech to Sally. We see that Mellotron contains the same
pauses and speech rate as the source which adds to the solem-
nity of the speech. For comparison, we provide the same
phrases synthesised with the original Tacotron 2 which fails
to convey the same solemnity.

4.4. Singing Voice Synthesis

Mellotron is able to generalize to rhythm and pitch from styles
and speakers not in the training set. We are able to synthesize
singing voice from a wide range of input speakers across a
range of music styles such as rap, pop, Hindustani and west-
ern European classical music.

4.4.1. Singing Voice from Audio Signal

Figure 2 shows an example where we use the Sweet Dreams
sample from the E2E-Prosody paper [1] and transfer its
text, rhythm and scaled pitch to Sally. Figure 2 shows that
Mellotron’s pitch contour is closer to the source than E2E-
Prosody is.

Fig. 2: Source, Mellotron and E2E-Prosody pitch contours.

4.4.2. Style transfer from Music Score

Unlike the experiments on audio, the rhythm and pitch con-
tours provided to the model by a music score are correct by
design. We provide a 4-part example with 20 voices per part
on an excerpt of Handel’s Hallelujah, a 8-part example with
1 voice per part on Ligeti’s Lux Aeterna and a single voice
example synthesizing the opening flute intro from Debussy’s
Prlude l’aprs-midi d’un faune. Except from cases where the
pitch is beyond the speaker’s vocal range, such as in Handel’s
sample, Mellotron has very precise pitch and rhythm.

5. CONCLUSION

In this paper we described Mellotron, a multispeaker voice
synthesis model that allows for direct control of style by con-
ditioning on rhythm and pitch obtained from an audio signal
or a music score.

Our numerical results show that Mellotron is superior to
other models with respect to F0 Frame Error. Our qualita-
tive results show that Mellotron is able to generate speech
in a variety of styles ranging from read speech to expressive
speech, from slow drawls to rap, and from monotonous voice
to singing voice although none of these styles are present in
the training data.

Recent singing voice synthesis papers [4] state that ”even
in the case of a real recording sample recorded by listening
to the original midi accompaniment, it is not easy to adjust
the timing and pitch of the correct note” indicating that it is
difficult for professional human singers and synthesized voice
to match a source audio or source music score perfectly. Our
results show that one of the advantages of Mellotron is that
the rhythm and pitch contour of a synthesized sample is ex-
tremely similar to the source audio file or music score, under
the assumption that the pitch is within a speaker’s vocal range.
When outside a speaker’s vocal range, Mellotron defaults to
either the lowest tone or highest tone.

For future work, we plan to study the effect of rhythm
and pitch contours on the audio quality by comparing samples
conditioned on pitch and rhythm data obtained from audio
signals versus music scores. With respect to pitch, we are also
interested in understanding the effect of multi-speaker train-
ing on a speaker’s vocal range and extending a speaker’s vocal
range as much as possible. Last, we would like to train Mel-
lotron on a animated and emotive storytelling style dataset to
investigate the contribution of such dataset to Mellotron.

6. REFERENCES

[1] RJ Skerry-Ryan, Eric Battenberg, Ying Xiao, Yuxuan
Wang, Daisy Stanton, Joel Shor, Ron J Weiss, Rob
Clark, and Rif A Saurous, “Towards end-to-end prosody
transfer for expressive speech synthesis with tacotron,”
arXiv preprint arXiv:1803.09047, 2018.

[2] Yuxuan Wang, Daisy Stanton, Yu Zhang, RJ Skerry-
Ryan, Eric Battenberg, Joel Shor, Ying Xiao, Fei Ren,
Ye Jia, and Rif A Saurous, “Style tokens: Unsuper-
vised style modeling, control and transfer in end-to-end
speech synthesis,” arXiv preprint arXiv:1803.09017,
2018.

[3] Masanari Nishimura, Kei Hashimoto, Keiichiro Oura,
Yoshihiko Nankaku, and Keiichi Tokuda, “Singing
voice synthesis based on deep neural networks,” in In-
terspeech 2016, 2016, pp. 2478–2482.

[4] Juheon Lee, Hyeong-Seok Choi, Chang-Bin Jeon,
Junghyun Koo, and Kyogu Lee, “Adversarially trained
end-to-end korean singing voice synthesis system,”
arXiv preprint arXiv:1908.01919, 2019.

[5] Robert A Moog, “Midi: musical instrument digital in-
terface,” Journal of the Audio Engineering Society, vol.
34, no. 5, pp. 394–404, 1986.

[6] Michael Good, “Musicxml for notation and analysis,”
The virtual score: representation, retrieval, restoration,
vol. 12, pp. 113–124, 2001.

[7] Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike
Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, et al.,
“Natural tts synthesis by conditioning wavenet on mel
spectrogram predictions,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 4779–4783.

[8] Andrew Gibiansky, Sercan Arik, Gregory Diamos, John
Miller, Kainan Peng, Wei Ping, Jonathan Raiman, and
Yanqi Zhou, “Deep voice 2: Multi-speaker neural text-
to-speech,” in Advances in neural information process-
ing systems, 2017, pp. 2962–2970.

[9] Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan O
Arik, Ajay Kannan, Sharan Narang, Jonathan Raiman,
and John Miller, “Deep voice 3: Scaling text-to-speech
with convolutional sequence learning,” arXiv preprint
arXiv:1710.07654, 2017.

[10] Alain De Cheveigné and Hideki Kawahara, “Yin, a fun-
damental frequency estimator for speech and music,”
The Journal of the Acoustical Society of America, vol.
111, no. 4, pp. 1917–1930, 2002.

[11] Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary,
Oleksii Kuchaiev, Jonathan M Cohen, Huyen Nguyen,
and Ravi Teja Gadde, “Jasper: An end-to-end con-
volutional neural acoustic model,” arXiv preprint
arXiv:1904.03288, 2019.

[12] Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Ro-
hit Prabhavalkar, Patrick Nguyen, Zhifeng Chen, An-
juli Kannan, Ron J Weiss, Kanishka Rao, Ekaterina Go-
nina, et al., “State-of-the-art speech recognition with
sequence-to-sequence models,” in 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2018, pp. 4774–4778.

[13] R. M. Ochshorn and M. Hawkins, “Gentle forced
aligner,” .

[14] Michael McAuliffe, Michaela Socolof, Sarah Mihuc,
Michael Wagner, and Morgan Sonderegger, “Montreal
forced aligner: Trainable text-speech alignment using
kaldi.,” in Interspeech, 2017, pp. 498–502.

[15] Justin Salamon and Emilia Gómez, “Melody extraction
from polyphonic music signals using pitch contour char-
acteristics,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 20, no. 6, pp. 1759–1770,
2012.

[16] Keith Ito, “The lj speech dataset,” https://
keithito.com/LJ-Speech-Dataset/, 2017.

[17] Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J
Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu, “Lib-
ritts: A corpus derived from librispeech for text-to-
speech,” arXiv preprint arXiv:1904.02882, 2019.

[18] Diederik P Kingma and Jimmy Ba, “Adam: A
method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[19] Ryan Prenger, Rafael Valle, and Bryan Catanzaro,
“Waveglow: A flow-based generative network for
speech synthesis,” in ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2019, pp. 3617–3621.

[20] Tomohiro Nakatani, Shigeaki Amano, Toshio Irino,
Kentaro Ishizuka, and Tadahisa Kondo, “A method for
fundamental frequency estimation and voicing decision:
Application to infant utterances recorded in real acousti-
cal environments,” Speech Communication, vol. 50, no.
3, pp. 203–214, Mar. 2008.

[21] Wei Chu and Abeer Alwan, “Reducing f0 frame error
of f0 tracking algorithms under noisy conditions with an
unvoiced/voiced classification frontend,” in 2009 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing. IEEE, 2009, pp. 3969–3972.

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/

	1 Introduction
	2 Method
	3 Implementation
	3.1 Architecture
	3.2 Training
	3.3 Inference
	3.3.1 Audio Signal
	3.3.2 Music Score

	4 Experiments
	4.1 Training Setup
	4.2 Quantitative Results
	4.3 Style transfer from Audio Signal
	4.3.1 Rhythm Transfer
	4.3.2 Rhythm and Pitch Transfer

	4.4 Singing Voice Synthesis
	4.4.1 Singing Voice from Audio Signal
	4.4.2 Style transfer from Music Score

	5 Conclusion
	6 References

